Index

Classes

Name Description

ACDCTerminal

An electrical connection point (AC or DC) to a piece of conducting equipment. Terminals are connected at physical connection points called connectivity nodes.

ActivePowerLimit

Limit on active power flow.

Analog

Analog represents an analog Measurement.

AnalogValue

AnalogValue represents an analog MeasurementValue.

BuurtnetDataSet

A single instance of a published dataset.

ConductingEquipment

The parts of the AC power system that are designed to carry current or that are conductively connected through terminals.

ConnectivityNodeContainer

A base class for all objects that may contain connectivity nodes or topological nodes.

CoordinateSystem

Coordinate reference system.

EnergyConnection

A connection of energy generation or consumption on the power system model.

EnergyConsumer

Generic user of energy - a point of consumption on the power system model. EnergyConsumer.pfixed, .qfixed, .pfixedPct and .qfixedPct have meaning only if there is no LoadResponseCharacteristic associated with EnergyConsumer or if LoadResponseCharacteristic.exponentModel is set to False.

Equipment

The parts of a power system that are physical devices, electronic or mechanical.

EquipmentContainer

A modelling construct to provide a root class for containing equipment.

GeographicalRegion

A geographical region of a power system network model.

IdentifiedObject

This is a root class to provide common identification for all classes needing identification and naming attributes.

IOPoint

The class describe a measurement or control value. The purpose is to enable having attributes and associations common for measurement and control.

Location

The place, scene, or point of something where someone or something has been, is, and/or will be at a given moment in time. It can be defined with one or more position points (coordinates) in a given coordinate system.

MarketEvaluationPoint

The identification of an entity where energy products are measured or computed.

Measurement

A Measurement represents any measured, calculated or non-measured non-calculated quantity. Any piece of equipment may contain Measurements, e.g. a substation may have temperature measurements and door open indications, a transformer may have oil temperature and tank pressure measurements, a bay may contain a number of power flow measurements and a Breaker may contain a switch status measurement. The PSR - Measurement association is intended to capture this use of Measurement and is included in the naming hierarchy based on EquipmentContainer. The naming hierarchy typically has Measurements as leaves, e.g. Substation-VoltageLevel-Bay-Switch-Measurement. Some Measurements represent quantities related to a particular sensor location in the network, e.g. a voltage transformer (VT) or potential transformer (PT) at a busbar or a current transformer (CT) at the bar between a breaker and an isolator. The sensing position is not captured in the PSR - Measurement association. Instead it is captured by the Measurement - Terminal association that is used to define the sensing location in the network topology. The location is defined by the connection of the Terminal to ConductingEquipment. If both a Terminal and PSR are associated, and the PSR is of type ConductingEquipment, the associated Terminal should belong to that ConductingEquipment instance. When the sensor location is needed both Measurement-PSR and Measurement-Terminal are used.

MeasurementValue

The current state for a measurement. A state value is an instance of a measurement from a specific source. Measurements can be associated with many state values, each representing a different source for the measurement.

OperationalLimit

A value and normal value associated with a specific kind of limit. The sub class value and normalValue attributes vary inversely to the associated OperationalLimitType.acceptableDuration (acceptableDuration for short). If a particular piece of equipment has multiple operational limits of the same kind (apparent power, current, etc.), the limit with the greatest acceptableDuration shall have the smallest limit value and the limit with the smallest acceptableDuration shall have the largest limit value. Note: A large current can only be allowed to flow through a piece of equipment for a short duration without causing damage, but a lesser current can be allowed to flow for a longer duration.

OperationalLimitSet

A set of limits associated with equipment. Sets of limits might apply to a specific temperature, or season for example. A set of limits may contain different severities of limit levels that would apply to the same equipment. The set may contain limits of different types such as apparent power and current limits or high and low voltage limits that are logically applied together as a set.

OperationalLimitType

The operational meaning of a category of limits.

PositionPoint

Set of spatial coordinates that determine a point, defined in the coordinate system specified in 'Location.CoordinateSystem'. Use a single position point instance to describe a point-oriented location. Use a sequence of position points to describe a line-oriented object (physical location of non-point oriented objects like cables or lines), or area of an object (like a substation or a geographical zone - in this case, have first and last position point with the same values).

PowerSystemResource

A power system resource (PSR) can be an item of equipment such as a switch, an equipment container containing many individual items of equipment such as a substation, or an organisational entity such as sub-control area. Power system resources can have measurements associated.

PowerTransformer

An electrical device consisting of two or more coupled windings, with or without a magnetic core, for introducing mutual coupling between electric circuits. Transformers can be used to control voltage and phase shift (active power flow). A power transformer may be composed of separate transformer tanks that need not be identical. A power transformer can be modelled with or without tanks and is intended for use in both balanced and unbalanced representations. A power transformer typically has two terminals, but may have one (grounding), three or more terminals. The inherited association ConductingEquipment.BaseVoltage should not be used. The association from TransformerEnd to BaseVoltage should be used instead.

PowerTransformerEnd

A PowerTransformerEnd is associated with each Terminal of a PowerTransformer. The impedance values r, r0, x, and x0 of a PowerTransformerEnd represents a star equivalent as follows. 1) for a two Terminal PowerTransformer the high voltage (TransformerEnd.endNumber=1) PowerTransformerEnd has non zero values on r, r0, x, and x0 while the low voltage (TransformerEnd.endNumber=2) PowerTransformerEnd has zero values for r, r0, x, and x0. Parameters are always provided, even if the PowerTransformerEnds have the same rated voltage. In this case, the parameters are provided at the PowerTransformerEnd which has TransformerEnd.endNumber equal to 1. 2) for a three Terminal PowerTransformer the three PowerTransformerEnds represent a star equivalent with each leg in the star represented by r, r0, x, and x0 values. 3) For a three Terminal transformer each PowerTransformerEnd shall have g, g0, b and b0 values corresponding to the no load losses distributed on the three PowerTransformerEnds. The total no load loss shunt impedances may also be placed at one of the PowerTransformerEnds, preferably the end numbered 1, having the shunt values on end 1. This is the preferred way. 4) for a PowerTransformer with more than three Terminals the PowerTransformerEnd impedance values cannot be used. Instead use the TransformerMeshImpedance or split the transformer into multiple PowerTransformers. Each PowerTransformerEnd must be contained by a PowerTransformer. Because a PowerTransformerEnd (or any other object) can not be contained by more than one parent, a PowerTransformerEnd can not have an association to an EquipmentContainer (Substation, VoltageLevel, etc).

StreetAddress

General purpose street and postal address information.

StreetDetail

Street details, in the context of address.

SubGeographicalRegion

A subset of a geographical region of a power system network model.

Substation

A collection of equipment for purposes other than generation or utilization, through which electric energy in bulk is passed for the purposes of switching or modifying its characteristics.

Terminal

An AC electrical connection point to a piece of conducting equipment. Terminals are connected at physical connection points called connectivity nodes.

TopologicalNode

For a detailed substation model a topological node is a set of connectivity nodes that, in the current network state, are connected together through any type of closed switches, including jumpers. Topological nodes change as the current network state changes (i.e., switches, breakers, etc. change state). For a planning model, switch statuses are not used to form topological nodes. Instead they are manually created or deleted in a model builder tool. Topological nodes maintained this way are also called "busses".

TransformerEnd

A conducting connection point of a power transformer. It corresponds to a physical transformer winding terminal. In earlier CIM versions, the TransformerWinding class served a similar purpose, but this class is more flexible because it associates to terminal but is not a specialization of ConductingEquipment.

UsagePoint

Logical or physical point in the network to which readings or events may be attributed. Used at the place where a physical or virtual meter may be located; however, it is not required that a meter be present.

Types

CIM data types

Name Description

ActivePower

Product of RMS value of the voltage and the RMS value of the in-phase component of the current.

Enumerations

Name Description

UnitMultiplier

The unit multipliers defined for the CIM. When applied to unit symbols, the unit symbol is treated as a derived unit. Regardless of the contents of the unit symbol text, the unit symbol shall be treated as if it were a single-character unit symbol. Unit symbols should not contain multipliers, and it should be left to the multiplier to define the multiple for an entire data type.

For example, if a unit symbol is "m2Pers" and the multiplier is "k", then the value is k(m**2/s), and the multiplier applies to the entire final value, not to any individual part of the value. This can be conceptualized by substituting a derived unit symbol for the unit type. If one imagines that the symbol "Þ" represents the derived unit "m2Pers", then applying the multiplier "k" can be conceptualized simply as "kÞ".

For example, the SI unit for mass is "kg" and not "g". If the unit symbol is defined as "kg", then the multiplier is applied to "kg" as a whole and does not replace the "k" in front of the "g". In this case, the multiplier of "m" would be used with the unit symbol of "kg" to represent one gram. As a text string, this violates the instructions in IEC 80000-1. However, because the unit symbol in CIM is treated as a derived unit instead of as an SI unit, it makes more sense to conceptualize the "kg" as if it were replaced by one of the proposed replacements for the SI mass symbol. If one imagines that the "kg" were replaced by a symbol "Þ", then it is easier to conceptualize the multiplier "m" as creating the proper unit "mÞ", and not the forbidden unit "mkg".

UnitSymbol

The derived units defined for usage in the CIM. In some cases, the derived unit is equal to an SI unit. Whenever possible, the standard derived symbol is used instead of the formula for the derived unit. For example, the unit symbol Farad is defined as "F" instead of "CPerV". In cases where a standard symbol does not exist for a derived unit, the formula for the unit is used as the unit symbol. For example, density does not have a standard symbol and so it is represented as "kgPerm3". With the exception of the "kg", which is an SI unit, the unit symbols do not contain multipliers and therefore represent the base derived unit to which a multiplier can be applied as a whole. Every unit symbol is treated as an unparseable text as if it were a single-letter symbol. The meaning of each unit symbol is defined by the accompanying descriptive text and not by the text contents of the unit symbol. To allow the widest possible range of serializations without requiring special character handling, several substitutions are made which deviate from the format described in IEC 80000-1. The division symbol "/" is replaced by the letters "Per". Exponents are written in plain text after the unit as "m3" instead of being formatted as "m" with a superscript of 3 or introducing a symbol as in "m^3". The degree symbol "°" is replaced with the letters "deg". Any clarification of the meaning for a substitution is included in the description for the unit symbol. Non-SI units are included in list of unit symbols to allow sources of data to be correctly labelled with their non-SI units (for example, a GPS sensor that is reporting numbers that represent feet instead of meters). This allows software to use the unit symbol information correctly convert and scale the raw data of those sources into SI-based units. The integer values are used for harmonization with IEC 61850.